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Abstract

We give new estimates for the eigenvalues of the hypersurface Dirac operator in terms of the
intrinsic energy–momentum tensor, the mean curvature and the scalar curvature. We also discuss
their limiting cases as well as the limiting cases of the estimates obtained by Zhang and Hijazi
[Math. Res. Lett. 5 (1998) 199; 6 (1999) 465; Ann. Glob. Anal. Geom., in press]. We compare these
limiting cases with those corresponding to the Friedrich and Hijazi inequalities. We conclude by
comparing these results to intrinsic estimates for the Dirac–Schrödinger operatorDf = D − 1

2f .
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1. Introduction

In this paper, we start by comparing the hypersurface spinor bundleS of a hypersurfaceM
to the fundamental spinor bundleΣM ofM. The hypersurface spinor bundleS is obtained
by restricting the spinor bundle of the ambient spaceN toM. If ϕ ∈ Γ (S) is a section of this
bundle, the energy–momentum tensorQϕ associated withϕ is defined on the complement
of its zero set, by

Q
ϕ
ij = 1

2(ei · ν · ∇j ϕ + ej · ν · ∇iϕ, ϕ/|ϕ|2),
whereν is a unit normal vector field globally defined alongM, ei, ej are vectors of a local
orthonormal frame ofM, and where∇iϕ stands for the covariant derivative of the spinor
field ϕ in the direction ofei . Then the Schrödinger–Lichnerowicz formula for the classical
Dirac operatorD onM leads to the following result (compare with [12,13]):
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Theorem 1.1. Let Mn ⊂ (Nn+1, g̃) be a compact hypersurface of a Riemannian spin
manifold N. Letλ be any eigenvalue of the hypersurface Dirac operatorDH = D − 1

2H ,
associated with an eigenspinorϕ. Assume thatR + 4|Qϕ |2 > H 2 > 0, then one has

λ2 ≥ 1
4 inf
M
(

√
R + 4|Qϕ |2 − |H |)2, (1)

where R and H are, respectively, the scalar curvature and the mean curvature of M, and
Qϕ is the energy–momentum tensor associated withϕ.

In fact, we see that ifM is a minimal hypersurface, the hypersurface Dirac operator
corresponds to the classical Dirac operator. Therefore, in this case, this estimate is exactly
the one given by Hijazi in [8].

We then discuss the limiting case of Eq. (1) and that given by Zhang in [12,13].
As in [7,9], we then prove

Theorem 1.2. Under the same conditions as in Theorem1.1,suppose that̄R e2u+4|Qϕ |2 >
H 2 > 0, whereR̄ is the scalar curvature of M for some conformal metricḡ = e2ug̃, with
du(ν)|M ≡ 0, then

λ2 ≥ 1
4 inf
M
(

√
R̄ e2u + 4|Qϕ |2 − |H |)2. (2)

The discussion of the limiting case in this inequality and that proved in [9] is similar to
that of (1). As a conclusion, we observe that these inequalities correspond to a generalization
of the classical estimates in terms of the Dirac–Schrödinger operatorDf = D − 1

2f , for a
real functionf onM. 1

2. Preliminaries

2.1. Restriction of spinors to the hypersurface

In this paper we will consider an oriented compact hypersurface(Mn, g) of a Riemannian
spin manifold(Nn+1, g̃), with a spin structure SpinN . The metricg is the induced metric
onM by g̃. The possibility to define globally a unit normal vector fieldν onM allows to
induce from SpinN a spin structure onM, denoted by SpinM. For this, we can associate
to every oriented orthonormal frame(e1, . . . , en) on M an oriented orthonormal frame
(e1, . . . , en, ν) of N such that the principal SO(n)-bundle SOnM of oriented orthonormal
frames onM is identified with a sub-bundle of SOn+1N|M . Such a map is denoted byΦ.

LetCln be then-dimensional complex Clifford algebra andCl0n its even part. Recall that
there exists an isomorphism

1 We would like to thank Oussama Hijazi for pointing out this problem, as well as Nicolas Ginoux and Xiao
Zhang for helpful discussions.
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α : Cln → Cl0n+1,

ei 7→ ei · ν. (3)

Here,ν stands for the last vector of the canonical basis ofR
n+1.

In particular,α yields the following commutative diagram:

where the inclusion of SO(n) in SO(n + 1) is that which fixes the last basis vector under
the action of SO(n+ 1) onRn+1, and Ad the adjoint representation of Spin(n) on SO(n),
which is given by

Adη(x) = η · x · η−1

for all η ∈ Spin(n) andx ∈ Rn.
This allows to pull back viaΦ the fiber bundle SpinN|M on SOM as a spin structure

forM, denoted by SpinM. The projection of SpinM on SOM, as well as the projection of
SpinN on SON , is denoted asπ . Thus, we have the following commutative diagram:

LetΣN be the spinor bundle onN , i.e.

ΣN = SpinN ×ρn+1 Σn+1,

whereρn+1 is the restriction to Spin(n + 1) of an irreducible representation ofCln+1 on
the space of spinorsΣn+1, of dimension 2[(n+1)/2] ([.] denotes the integer part). Recall that
if n + 1 is odd, this representation is chosen so that the complex volume form acts as the
identity onΣn+1.

Locally, by definition ofΣN , if U is an open subset ofN andψ ∈ ΓU(ΣN) a local
section of the spinor bundle, we can write

ψ = [̃s, σ ],

whereσ : U → Σn+1 and̃s : U → SpinN are smooth maps, and [s̃, σ ] is the equivalence
class with respect to the relation

[̃s, σ ] ∼ [̃sg, ρn+1(g
−1)σ ], ∀g ∈ Spin(n+ 1).

Moreover, we can always assume thatπ(̃s) is a local section of SON with ν for last basis
vector. Then we have

ψ|U∩M = [(̃s|U∩M, σ|U∩M)],

where the equivalence class is reduced to elements of Spin(n).
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It follows that one can realize the restriction toM of the spinor bundleΣN as

S := ΣN|M = SpinM ×ρn+1◦α Σn+1.

Remark. The inclusion of Spin(n) in Spin(n + 1) given byα is the trivial one. But, this
notation emphasizes that Clifford multiplication of a spinor fieldφ ∈ Γ (S) by a vectorX
tangent toM is given by

(X, φ) 7→ X · ν · φ. (4)

This fact is crucial for the following identification (see [1,2]).

2.2. Identification ofS withΣM

We now compareS with the intrinsic spinor bundle ofM,

ΣM = SpinM ×ρn Σn.

For this, we have to examine the cases wheren is even or odd. First assume thatn = 2m is
even. From (3) and

Cl2m ∼= C(2m), (5)

it follows that the representation ofCl2m given byρ2m+1◦α is simply the restriction ofρ2m+1

toCl02m+1. But this representation is irreducible (see [10]). The representationρ2m+1 ◦α is
then an irreducible representation ofCl2m of dimension dimΣ2m+1 = 2[(2m+1)/2] = 2m,
asρ2m. Now, (5) implies that such a representation is unique up to an isomorphism. So
ρ2m ∼= ρ2m+1 ◦ α and we can conclude that

S ∼= ΣM. (6)

Letω2m = ime1 . . . e2m be the complex volume form in even dimension. An easy calcu-
lation shows thatα(ω) = ω. The decomposition ofΣM into positive and negative parts is
preserved under the isomorphism (6) and we have

S = S+ ⊕ S−,

where

S± = {ψ ∈ S|iν · ψ = ±ψ} ∼= ΣM±.

Indeed, because we chooseρ2m+1 as the irreducible representation ofCl2m+1 for which
the complex volume formω2m+1 = im+1e1 · · · · · e2m · ν acts as the identity onΣ2m+1, one
has, forψ ∈ S

iν · ψ = iν · ω2m+1 · ψ = imi2ν · e1 · · · · · e2m · ν · ψ = ω2m · ψ.
Assume now thatn = 2m+ 1 is odd. Recall the following isomorphism:

Cl2m+1 = C(2m)⊕ C(2m). (7)
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As mentioned above,ρ2m+1 corresponds to the irreducible representation ofCl2m+1 for
which the action of the complex volume formω2m+1 is the identity. Becausen+1 = 2m+2
is even,ΣN decomposes into positive and negative parts,

ΣN± = SpinN ×ρ±
2m+2

Σ±
2m+2.

If ek is a basis vector tangent toM, then

α(ek) · ω2m+2 = im+1ek · ν · e1 · · · · · e2m+1 · ν
= im+1(−1)2m+2(−1)2m+2e1 · · · · · e2m+1 · ν · ek · ν = ω2m+2 α(ek).

Soρ2m+2 ◦ α preserves the decomposition ofΣN , and

S = S+ ⊕ S−,

with

S± = SpinM ×ρ±
2m+2◦α Σ

±
2m+2,

and whereω2m+2 acts as±Id onS±.
Moreover,

α(ω2m+1) = im+1(e1 · ν) · · · · · (e2m+1 · ν) = im+1e1 · · · · · e2m+1 · ν = ω2m+2,

and thenρ2m+1 andρ+
2m+2 ◦ α are both irreducible representations ofCl2m+1 of the same

dimension, such thatρ2m+1(ω2m+1) andρ+
2m+2 ◦ α(ω2m+1) are, respectively, the identity

onΣ2m+1 andΣ+
2m+2. Because such a representation is unique up to an isomorphism, we

deduce thatρ2m+1 ∼= ρ+
2m+2 ◦ α and

S+ ∼= ΣM. (8)

Thus we have shown the following proposition.

Proposition 2.1. If n is even(resp. odd), there exists an identification of the hypersurface
spinor bundle S(resp.S+) with the spinor bundleΣM which sends every spinorϕ ∈ S

(resp.S+) to the spinor denoted byϕ∗ ∈ ΣM. Moreover, with respect to this identification,
Clifford multiplication by a vector field X, tangent to M, is given by

X · ϕ∗ = (X · ν · ϕ)∗.

2.3. The spinorial Gauss formula and the hypersurface Dirac operator

Let ∇̃ be the Levi–Civita connection of(Nn+1, g̃), and∇ that of(Mn, g). Let (e1, . . . ,

en, en+1 = ν) be a local orthonormal basis forTM, then the Gauss formula says that for
1 ≤ i, j ≤ n,

∇̃iej = ∇iej + hijν, (9)

wherehij are the coefficients of the second fundamental form of the hypersurfaceM. We
are going to relate the associated connections on the corresponding spinor bundles. For this,
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considerφ ∈ Γ (ΣN) andϕ = φ|M ∈ Γ (S) its restriction toM. Recall now that locally,
for X ∈ Γ (TM),

∇̃Xφ = X(φ)+ 1

2

∑
1≤i<j≤n+1̃

g(∇̃Xei, ej )ei · ej · φ, (10)

and

∇Xϕ = X(ϕ)+ 1

2

∑
1≤i<j≤n

g(∇Xei, ej )ei · ν · ej · ν · ϕ

= X(ϕ)+ 1

2

∑
1≤i<j≤n

g(∇Xei, ej )ei · ej · ϕ.

Therefore, by restricting both sides of Eq. (10) toM, and using the fact thatX(φ)|M =
X(φ|M) for X tangent toM, the Gauss formula (9) yields, for 1≤ k ≤ n,

(∇̃kφ)|M = ek(ϕ)+ 1

2

∑
1≤i<j≤n

g̃(∇kei + hkiν, ej )ei · ej · ϕ

+1

2

∑
1≤i≤n

g̃(∇kei + hkiν, ν)ei · ν · ϕ

= ek(ϕ)+ 1

2

∑
1≤i<j≤n

g(∇kei, ej )ei · ej · ϕ + 1

2

∑
1≤i≤n

hkiei · ν · ϕ

= ∇kϕ + 1

2

∑
1≤i≤n

hkiei · ν · ϕ.

Once again, from Eq. (10), it makes sense to write(∇̃Xφ)|M = ∇̃Xϕ whenX is tangent
toM, and hence we proved the spinorial Gauss formula

∀ϕ ∈ Γ (S), ∀X ∈ Γ (TM), ∇̃Xϕ = ∇Xϕ + 1
2h(X) · ν · ϕ. (11)

(Hereh is seen as an endomorphism of the tangent bundle.)
It is known (see [10]) that there exists a positive definite Hermitian metric〈·, ·〉 onΣN

such that, ifτ is ak-form onN ,

〈τ · φ,ψ〉 = (−1)k(k+1)/2〈φ, τ · ψ〉, ∀φ,ψ ∈ Γ (ΣN). (12)

If we denote(·, ·) its real part, we have

(X̃ · φ, Ỹ · φ) = g̃(X̃, Ỹ )(φ, φ), (X̃ · φ, φ) = 0, ∀X̃, Ỹ ∈ Γ (TN). (13)

We simply restrict(·, ·) toM to get a globally defined metric onS. Now, becausẽ∇ is
compatible with(·, ·), i.e.

X(ϕ,ψ) = (∇̃Xϕ,ψ)+ (ϕ, ∇̃Xψ), ∀ϕ,ψ ∈ Γ (S), ∀X ∈ Γ (TM).

Formula (11) easily implies that∇ is also compatible with the metric. We remark that
Eq. (11) implies that with respect to the identification of Proposition 2.1, we have

(∇φ)∗ = ∇φ∗. (14)
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This leads to the metric(·, ·)ΣM on the intrinsic spinor bundle, with the same properties as
(·, ·), and hence the two bundles are isometric.

Because Clifford multiplication of a spinor by a vector tangent toM is given by (4), ifn
is odd,S+ is stable by∇ and by Clifford multiplication. So the classical Dirac operator is
simply defined onS for n even (resp.S+ for n odd) by

D =
n∑
i=1

ei · ν · ∇i .

Now we define the hypersurface Dirac operator onΓ (S) as

DH =
n∑
i=1

ei · ν · ∇̃i .

This definition is motivated by the following fact. Let

D̃ =
n∑
i=1

ei · ∇̃i

be the hypersurface Dirac operator defined by Witten (see [6,11]) to prove the positive
energy conjecture in general relativity. TheñD is not formally self-adjoint with respect to
the metric(·, ·). Indeed, it is proved in [9] that

D2
H = D̃∗D̃,

whereD̃∗ is the formal adjoint of̃D w.r.t. (·, ·).
From formula (11), we see that forn even (resp. odd), we have the following relations

onΓ (S) (resp.Γ (S+)):

DH =
∑
i

ei · ν · ∇i +
∑
i

ei · ν · h(ei)
2

· ν

= D +
∑
i,j

hij

2
ei · ej = D +

∑
i,j

hij

4
(ei · ej + ej · ei) = D −

∑
i,j

hij

2
δij ,

and hence, ifH = ∑
ihii is the mean curvature of the hypersurface, we have

DH = D − H

2
. (15)

In the following, we will not distinguish the cases wheren is even or odd. In fact, ifn is odd,
DH preserves the decomposition ofS into positive and negative spinors, as well as Clifford
multiplication (recall (4)),̃∇ and∇. Indeed, ifφ ∈ Γ (S) is an eigenspinor ofDH with
eigenvalueλ, it is the same forφ+, its positive part. So we only consider positive spinors.
The notation becomes easier with this convention.

Now, it is easy to see from Eq. (15) thatDH is formally self-adjoint with respect to the
metric(·, ·) (see [9]). Finally, recall the well-known Schrödinger–Lichnerowicz formula on
Γ (ΣM) which by the previous identification is also true onΓ (S):

D2 = ∇∗∇ + 1
4R, (16)
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R being the scalar curvature ofM and∇∗ the formal adjoint of∇ with respect to the
metric(·, ·).

3. Proof of the Theorem 1.1

Now we give an estimate for the eigenvalues ofDH in terms of the energy–momentum
tensor (see [8]). For any spinor fieldϕ ∈ Γ (S), we define the associated energy–momentum
2-tensorQϕ on the complement of its zero set, by

Q
ϕ
ij = 1

2(ei · ν · ∇j ϕ + ej · ν · ∇iϕ, ϕ/|ϕ|2). (17)

Remark 3.1. This definition corresponds to the one given in [8] if we note that with respect
to the identification ofS with ΣM of Proposition 2.1,

Q
ϕ
ij = 1

2(ei · ∇j ϕ∗ + ej · ∇iϕ∗, ϕ∗/|ϕ∗|2)ΣM.
If ϕ is an eigenspinor forDH , Qϕ is well defined in the sense of distribution. For any

real functionsp andq, consider the modified covariant derivative defined onS by

∇Q
i = ∇i +

(
p
H

2
+ qλ

)
ei · ν +

∑
j

Q
ϕ
ij ej · ν. (18)

Remark 3.2. This connection is well defined onS+ whenn is odd.

Using (13), we have

|∇Qϕ|2 = |∇ϕ|2 + n

(
p
H

2
+ qλ

)2

|ϕ|2 +
∑
i,j,k

Q
ϕ
ijQ

ϕ

ik(ej · ν · ϕ, ek · ν · ϕ)

+2

(
p
H

2
+ qλ

)∑
i

(∇iϕ, ei · ν · ϕ)+ 2
∑
i,j

Q
ϕ
ij (∇iϕ, ej · ν · ϕ)

+2

(
p
H

2
+ qλ

)∑
i,j

Q
ϕ
ij (ei · ν · ϕ, ej · ν · ϕ)

= |∇ϕ|2 + n

(
p
H

2
+ qλ

)2

|ϕ|2 + |Qϕ |2|ϕ|2 − 2

(
p
H

2
+ qλ

)
(Dϕ, ϕ)

−2|Qϕ |2|ϕ|2 + 2

(
p
H

2
+ qλ

)
Tr(Qϕ)|ϕ|2,

but

Tr(Qϕ)|ϕ|2 = (Dϕ, ϕ),

hence

|∇Qϕ|2 = |∇ϕ|2 + n(p(1
2H)+ qλ)2|ϕ|2 − |Qϕ |2|ϕ|2. (19)
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Now, sinceDH = D− 1
2H , the Schrödinger–Lichnerowicz formula (16) onΓ (S) gives∫

M

|∇ϕ|2vg =
∫
M

(
|Dϕ|2 − R

4
|ϕ|2

)
vg =

∫
M

((
λ+ H

2

)2

− R

4

)
|ϕ|2vg. (20)

Therefore (19) and (20) imply∫
M

|∇Qϕ|2vg =
∫
M

(
(1 + nq2)λ2 − R

4
− |Qϕ |2

)
|ϕ|2vg

+
∫
M

(
(1 + np2)

H 2

4
+ (1 + npq)Hλ

)
|ϕ|2vg. (21)

Now, assume thatq has no zeros so that we can choosep = −1/nq. Then (21) becomes∫
M

|∇Qϕ|2vg =
∫
M

(1 + nq2)

[
λ2 − 1

4

(
R + 4|Qϕ |2

1 + nq2
− H 2

nq2

)]
|ϕ|2vg. (22)

If R + 4|Qϕ |2 > H 2 > 0, we can take

nq2 = |H |√
R + 4|Qϕ |2 − |H |

. (23)

Then Eq. (22) becomes∫
M

|∇Qϕ|2vg =
∫
M

(1 + nq2)[λ2 − 1
4(

√
R + 4|Qϕ |2 − |H |)2]|ϕ|2vg. (24)

Because the left-hand side of this equation is positive andλ is a constant, we get

λ2 ≥ 1
4 inf
M
(

√
R + 4|Qϕ |2 − |H |)2. (25)

Remark 3.3. If M is minimal, i.e.H = 0, we can chooseq ≡ 0 in (18) so that (25)
specializes to the inequality of Theorem A in [8].

Remark 3.4. Note that our definition of the energy–momentum tensorQϕ coincides with
that in [8]. The definition used in [9,12,13] gives a factorn/(n− 1) in front ofR+ 4|Qϕ |2
in inequality (25) but in this case,Qϕ has no canonical intrinsic meaning.

4. Limiting cases

First recall the inequality proved by Zhang.

Theorem 4.1 (Zhang [12,-16905]).Let Mn ⊂ Nn+1 be a compact hypersurface of a
Riemannian spin manifold(N, g̃). Assume thatn ≥ 2 and nR> (n− 1)H 2 > 0. Then ifλ
is any eigenvalue of the hypersurface Dirac operatorDH , one has

λ2 ≥ 1

4
inf
M

(√
n

n− 1
R − |H |

)2

. (26)
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As in the proof of Theorem 1.1, the proof of Theorem 4.1 is based on the use of the
modified connection

∇λ
i = ∇i + (p(1

2H)+ qλ)ei · ν. (27)

Here,p andq are related by

p = 1 − q

1 − nq
, (28)

and

q = 1

n

(
1 −

√
(n− 1)|H |√

n/(n− 1)R − |H |

)
(29)

or, in other terms,

(1 − nq)2 = (n− 1)|H |√
n/(n− 1)R − |H | . (30)

Equality holds in (26) for an eigenspinorϕ of DH with eigenvalueλ if and only if√
n/(n− 1)R − |H | is constant and∇λϕ ≡ 0. But, with respect to the identification

of Proposition 2.1, and by (14),∇λϕ ≡ 0 is equivalent to

∀i = 1, . . . , n, ∇iϕ∗ = −(p(1
2H)+ qλ)ei · ϕ∗. (31)

It is known (see [7]) that if such a section exists onΣM, thenp(H/2)+qλhas to be constant
(sayλ1/n for instance) and that in this caseM is Einstein andR = 4((n− 1)/n)λ2

1. Soϕ
is a Killing spinor and we are in the limiting case of Friedrich’s inequality [3]. Moreover,
since

√
n/(n− 1)R − |H | is constant,H has to be constant.

Therefore, sinceDϕ = λ1ϕ andλ1 = 1
2sign(λ1)

√
n/(n− 1)R, the following equation

must be satisfied (recall thatDH = D − 1
2H ):

λ = sign(λ1)

2

√
n

n− 1
R − H

2
= sign(λ1)

2

√
n

n− 1
R − sign(H)

|H |
2
. (32)

But equality case gives

λ = sign(λ)

2

(√
n

n− 1
R − |H |

)
, (33)

So (32) and (33) imply that

sign(λ) = sign(λ1) = sign(H). (34)

On the other hand, an easy calculation leads to

p
H

2
+ qλ = sign(λ)

2n

√
n

n− 1
R + (sign(H)− sign(λ))

2n

×
1 +

√
(n− 1)

(√
n

n− 1
R − |H |

) = sign(λ1)

2n

√
n

n− 1
R

and we recover the already known fact thatp(H/2)+ qλ = λ1/n.
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Indeed, (34) can be trivially observed because in the equality case, bothR andH are
constant, so we can think of the spectrum ofDH as the shifting of the spectrum ofD by
−1

2H . Then the conditionnR> (n − 1)H 2 > 0 in Theorem 4.1 simply implies that the
lowest eigenvalue ofDH (in the sense of its absolute value) must have the sign ofH . In
particular, whenn is even, it shows how we lose the symmetry of the spectrum when passing
fromD toDH (compare with the case whereH = 0).

Now we discuss the case of Theorem 1.1. The limiting case of inequality (1) holds for an
eigenspinorϕ ofDH with eigenvalueλ if and only if ∇Qϕ ≡ 0. First note that this implies
that|ϕ| is constant. Then, with respect to the identification of Proposition 2.1, and by (14),
∇Qϕ ≡ 0 is equivalent to

∇iϕ∗ = −
(
p
H

2
+ qλ

)
ei · ϕ∗ −

∑
j

Q
ϕ
ij ej · ϕ∗. (35)

Let f = p(H/2)+ qλ, then Eq. (35) can be written as

∇iϕ∗ = −
∑
j

(Q
ϕ
ij + f δij ) ej · ϕ∗. (36)

Now letTij = Q
ϕ
ij + f δij , taking Clifford multiplication byek on both sides of Eq. (36),

yields

ek · ∇iϕ∗ = −
∑
j

Tij ek · ej · ϕ∗,

which gives

(ek · ∇iϕ∗, ϕ∗)ΣM = −
∑
j

Tij (ek · ej · ϕ∗, ϕ∗)ΣM,

and, because(ek · ej · ϕ∗, ϕ∗)ΣM = 0 unlessj = k andTij is symmetric, we proved

1
2(ei · ∇kϕ∗ + ek · ∇iϕ∗, ϕ∗/|ϕ∗|2)ΣM = Tik.

Hence

Tik = Q
ϕ

ik,

and we can conclude thatf = 0. Eq. (35) reduces to

∇iϕ∗ = −
∑
j

Q
ϕ
ij ej · ϕ∗. (37)

Such field equations have been studied, as well as their integrability conditions, by Kim and
Friedrich in [5]. Note that they allow a nice formulation of the theory of immersed surfaces in
the Euclidean 3-space (see [3]). We will call an EM-spinor (for energy–momentum spinor)
a non trivial spinor field satisfying (37). If it is an eigenspinor for the Dirac operator, which
is equivalent to the fact that trQϕ is constant, it is called T-Killing spinor (see [4]). In fact,
a T-Killing spinor is exactly a spinor field satisfying the limiting case in Hijazi’s inequality
[8].
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Now we have (see [8] or Lemma 4.1(iii) of [5])

(trQϕ)2 = 1
4R + |Qϕ |2. (38)

So (37) implies that

Dϕ = Fϕ,

whereF 2 = 1
4R + |Qϕ |2. Whereas equality case in (1) gives

√
R + 4|Qϕ |2 − |H | is

constant, we cannot conclude here that1
4R + |Qϕ |2 andH are constant as in the case of

Zhang’s inequality. Nevertheless, we have the following.

Corollary 4.2. If H is constant, then equality case in(1) holds if and onlyϕ is a T-Killing
spinor.

By hypothesisH has constant sign and we can conclude thatλ has the same sign. Recall
thatp andq are related by

p = − 1

nq

and

nq2 = |H |√
R + 4|Qϕ |2 − |H |

.

Indeed, an easy calculation gives

0 = f =
(
p
H

2
+ qλ

)
= (sign(λ)− sign(H))

2
√
n

√
|H |(

√
R + 4|Qϕ |2 − |H |). (39)

Hence

sign(λ) = sign(H).

Remark 4.3. Equality case of (26) is included in that of (1): if we assume thatϕ is a Killing
spinor, then necessarilyQϕ

ij = (λ1/n)δij and so(trQϕ)2 = λ2
1 = 1

4n/(n− 1)R. Therefore
Eq. (38) implies

4|Qϕ |2 = n

n− 1
R − R

and we have

λ2 =
(√

n

n− 1
R − |H |

)2

.

Remark 4.4. The previous remark shows that Theorem 1.1 improves Theorem 4.1. In
particular, it does not requireR to be positive, and the limiting case does not imply thatH

has to be constant.
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5. Proof of the Theorem 1.2

Consider a conformal change of the metricḡ = e2ug̃ for any real functionu onN . For
simplicity, let N̄ = (N, ḡ). The natural isometry between SON and SON̄ induced by
this conformal change of the metric lifts to an isometry between the Spin(n+ 1)-principal
bundles SpinN and SpinN̄ , and hence between the two corresponding hypersurface spinor
bundlesS andS̄. If ϕ ∈ Γ (S), denote byϕ̄ ∈ Γ (S̄) its image by this isometry. Let(·, ·)ḡ
be the metric on̄S naturally defined as described in Section 2. Then forϕ, ψ two sections
of S, we have

(ϕ, ψ) = (ϕ̄, ψ̄)ḡ, X̄·̄ψ̄ = X · ψ.
We will also denote bȳg = e2u

|Mg the restriction ofḡ toM. By conformal covariance of
the Dirac operator, we have, forϕ ∈ Γ (S), (see [9])

D̄(e−((n−1)/2)u ϕ̄) = e−((n+1)/2)u Dϕ, (40)

whereD̄ stands for the Dirac operator w.r.t.ḡ. On the other hand

H̄ = e−u(H + ndu(ν)). (41)

Therefore, ifD̄H̄ stands for the hypersurface Dirac operator w.r.t.ḡ, Eqs. (40) and (41)
imply that,

D̄H̄ (e
−((n−1)/2)u ϕ̄) = e−((n+1)/2)u(DHϕ − 1

2ndu(ν)ϕ̄). (42)

Remark 5.1. We see that if du(ν)|M = 0,DH is a conformal invariant operator. In this case,
techniques used in [7] can be applied for the eigenvalues ofDH . Indeed, such a conformal
change of metric can be viewed as a intrinsic conformal change of the metric onM, when
we omit the ambient spaceN (See Section 7).

From now on, we will only consider conformal changes of the metricḡ = e2ug̃ with
du(ν) = 0 onM. They will be called regular conformal changes of metric as in [9].

For ϕ ∈ Γ (S) an eigenspinor ofDH with eigenvalueλ, let ψ̄ := e−((n−1)/2)u ϕ̄. Then
(42) gives

D̄H̄ ψ̄ = λH e−u ψ̄. (43)

Recall that

∇̄i ϕ̄ = ∇iϕ − 1
2ei · du · ϕ − 1

2ei(u)ϕ̄, (44)

andei = e−uei . Now, as in [7], it is straightforward to get

Q̄
ψ̄

īj̄
= 1

2(ei ·̄ν̄ ·̄∇̄ej ψ̄ + ej ·̄ν̄ ·̄ ∇̄ei ψ̄, ψ̄/|ψ̄ |2ḡ)ḡ
= 1

2e−u(ei ·̄ν̄ ·̄∇̄ej ϕ̄ + ej ·̄ν̄ ·̄∇̄ei ϕ̄, ϕ̄/|ϕ̄|2ḡ)ḡ
= 1

2e−u(ei · ν · ∇ej ϕ + ej · ν · ∇ei ϕ, ϕ/|ϕ|2) = e−uQϕ
ij . (45)
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Hence,

|Q̄ψ̄ |2 = e−2u|Qϕ |2 (46)

Eq. (22), which is also true onN , applied toψ̄ yields∫
M

|∇̄Qψ̄ |2vḡ =
∫
M

(1 + nq2)

[
λ2 e−2u − 1

4

(
R̄ + 4|Q̄ψ̄ |2

1 + nq2
− H̄ 2

nq2

)]
|ϕ̄|2vḡ (47)

which, because of (41) and (46) gives∫
M

|∇̄Qψ̄ |2vḡ=
∫
M

(1 + nq2)

[
λ2 − 1

4

(
R̄ e2u + 4|Qϕ |2

1 + nq2
− H 2

nq2

)]
e−2u|ϕ̄|2vḡ. (48)

Taking

nq2 = |H |√
R̄ e2u + 4|Qϕ |2 − |H |

completes the proof of Theorem 1.2.

6. General limiting cases

We now discuss the limiting case in inequality (2). Equality holds if and only if∇̄Q

ī
ψ̄ = 0

for 1 ≤ i ≤ n, which can be written as

0 = ∇̄ī ψ̄ +
(
p
H̄

2
+ q e−uλ

)
ei ·̄ν̄ ·̄ψ̄ +

∑
j

Q̄
ψ̄
ij ej ·̄ν̄ ·̄ψ̄.

Sinceψ̄ := e−((n−1)/2)uϕ̄, (44) and (46) yield

0 = e−((n−1)/2)u e−u

×
∇iϕ − 1

2
ei · du · ϕ − n

2
ei(u)ϕ̄ +

(
p
H

2
+ qλ

)
ei · ν · ϕ +

∑
j

Q
ϕ
ij ej ·ν·ϕ

 .
(49)

With respect to the identification of Proposition 2.1, and by (14), this last statement is
equivalent to

∇iϕ∗ = 1

2
ei · du · ϕ∗ + n

2
du(ei)ϕ

∗ − fei · ϕ∗ −
∑
j

Q
ϕ
ij ej · ϕ∗. (50)

wheref := p(H/2)+ qλ. As in Section 4, letTij = Q
ϕ
ij + f δij . It is then straightforward

to prove thatTij = Q
ϕ
ij and sof = 0.

Taking the scalar product of (50) withϕ∗, it follows:

1
2ei(|ϕ|2) = (∇iϕ∗, ϕ∗)ΣM

= 1
2(ei · du · ϕ∗, ϕ∗)ΣM + 1

2ndu(ei)|ϕ|2 = 1
2(n− 1)du(ei)|ϕ|2.
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Therefore,

du = d|ϕ|2
(n− 1)|ϕ|2 . (51)

So we proved that equality holds in (2) if and only if the eigenspinorϕ satisfies

∇iϕ∗ = 1

2
ei · du · ϕ∗ + n

2
du(ei)ϕ

∗ −
∑
j

Q
ϕ
ij ej · ϕ∗

with u satisfying (51). Such field equations have already been studied, as well as their
integrability conditions, by Friedrich and Kim [5]. We will call them WEM-spinors (for
weak energy–momentum spinors). If they satisfy the Einstein–Dirac equation, they are
called WK-spinors (for weak Killing spinors). These are exactly the limiting case of Hijazi’s
equality involving conformal change of the metric and the energy–momentum tensor [8],
in which case, they are also eigenspinors for the classical Dirac operator.

In our situation, there are not eigenspinors forD. As a consequence, even if in the
limiting case

√
R̄ e2u + 4|Qϕ |2 − |H | has to be constant, we cannot conclude that both√

R̄ e2u + 4|Qϕ |2 andH are constant.
Nevertheless, as in the previous section, a simple calculation leads to

0 = f = eu
sign(λ)− sign(H)

2
√
n

√
|H |

(√
R̄ e2u + 4|Qϕ |2 − |H |

)
.

Hence

sign(λ) = sign(H).

Now recall the inequality proved by Hijazi and Zhang:

Theorem 6.1(Hijazi and Zhang [9]).LetMn ⊂ Nn+1 be a compact hypersurface of a
Riemannian spin manifold(N, g̃). Assume thatn ≥ 2 andnR̄ e2u > (n − 1)H 2 > 0 for
some regular conformal change of the metricḡ = e2ug̃. Then ifλ is any eigenvalue of the
hypersurface Dirac operatorDH , one has

λ2 ≥ 1

4
inf
M

(√
n

n− 1
R̄ e2u − |H |

)2

. (52)

As in the proof of Theorem 1.2, Theorem 6.1 is obtained by using the modified connection
defined by (27), on the manifold(N, ḡ = e2ug̃).

As in the beginning of this section, it is then easy to see that equality holds in (52) if and
only if

0=e−((n−1)/2)u e−u[∇iϕ − 1
2ei · du · ϕ − 1

2nei (u)ϕ̄ + (p(1
2H)+qλ)ei · ν · ϕ]. (53)

With respect to the identification of Proposition 2.1, and by (14), this last statement is
equivalent to

∇iϕ∗ = 1
2ei · du · ϕ∗ + 1

2ndu(ei)ϕ
∗ − fei · ϕ∗. (54)
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wheref := p(H/2) + qλ. As in Section 4, letTij = f δij . Then it is straightforward to
prove thatTij = Q

ϕ
ij and that spinors fields satisfying the equality case in Theorem 6.1 are

particular WEM-spinors. Now, by (38) and by (45), we see that necessarily

f = ±1

n

√
n

n− 1
R̄ e2u. (55)

Hence, solutions of (54) correspond exactly to sections verifying the limiting case of in-
equality (5.1) in [7].

Recall that here,p andq are given by

p = 1 − q

1 − nq
, (56)

and

(1 − nq)2 = (n− 1)|H |√
n/(n− 1)R̄ e2u − |H |

. (57)

Therefore we can recover that sign(λ) = sign(H) as made previously by computing explic-
itly p(H/2)+ qλ. In fact, as in Remark 4.3, the consequence of Eq. (38) is that Theorem
1.2 improves Theorem 6.1.

7. Concluding remark

We conclude this paper by observing that all computations previously made could be done
in an intrinsic way, considering a modified Dirac operatorDf = D− 1

2f , and connections
onΣM:

∇λ
i = ∇i + (p(f/2)+ qλ)ei

and

∇Q
i = ∇i + (p(f/2)+ qλ)ei +Q

ϕ
ij ej ,

with an appropriate choice ofp andq (simply replaceH by f ), in (28) and (30).
The identification of the spinor bundles of Section 2 allows to assert that computations

will lead to the same results, but in a more general way. Therefore we can deduce the
following proposition.

Proposition 7.1. Let(Mn, g) be a compact Riemannian spin manifold. Assume thatn ≥ 2
and nR> (n− 1)f 2 > 0, with f : M → R a smooth function. Then for any eigenvalueλ
of the Dirac–Schrödinger operatorDf = D − 1

2f , one has

λ2 ≥ 1

4
inf
M

(√
n

n− 1
R − |f |

)2

.
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Equality hold if and only if M admits a Killing spinor and in this case(Mn, g) is Einstein,
f constant, and

sign(λ) = sign(f ).

Similarly, one obtain Proposition 7.2.

Proposition 7.2. Let(Mn, g) be a compact Riemannian spin manifold. Letλ be any eigen-
value of the Dirac–Schrödinger operatorDf = D − 1

2f , associated with the eigenspinor
ϕ. Assume thatR + 4|Qϕ |2 > f 2 > 0, then

λ2 ≥ 1
4 inf
M

(√
R + 4|Qϕ |2 − |f |

)2

,

whereQϕ is the energy–momentum tensor associated withϕ.
If equality holds M admits an EM-spinor, and in this case,

sign(λ) = sign(f ).

Now using a conformal change of the metricg, (see Remark 5.1), we prove Proposition
7.3 in the same way

Proposition 7.3. Let(Mn, g) be a compact Riemannian spin manifold. Letλ be any eigen-
value of the Dirac–Schrödinger operatorDf = D − 1

2f , associated with the eigenspinor
ϕ.

If R̄ e2u + 4|Qϕ |2 > f 2 > 0, whereR̄ is the scalar curvature of M for a conformal
metric ḡ = e2ug, then

λ2 ≥ 1
4 inf
M

(√
R̄ e2u + 4|Qϕ |2 − |f |

)2

.

Equality holds if and only if M admits a WEM-spinor, and in this case, the function u is
uniquely defined up to a constant by

u = ln(|ϕ|2)
(n− 1)

.

Moreover,

sign(λ) = sign(f ).
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